Model Checking Concurrent Collections
Extended Report

Joshua H. Davis
University of Maryland, College Park
College Park, MD, USA
jhdavis@umd.edu

Abstract

Concurrent collections are data structures such as sets, lists,
and queues that can be safely accessed by multiple concur-
rently executing threads. Numerous algorithms have been
introduced and developed over decades. They use a variety
of synchronization mechanisms, including locks, condition
variables, and atomic operations such as compare-and-set.
The algorithms are notoriously difficult to get right, and
various computer-aided verification approaches have been
proposed to help. In this paper we introduce an approach
based on small scope explicit-state model checking with a
number of optimizations to ameliorate state-explosion, re-
alized in a tool, the CoLLECT verifier. In an extensive case
study, we have applied CoLLECT to 20 implementations from
a widely-used text, verifying many of the algorithms within
small scope and finding some previously undiscovered de-
fects in others.

1 Introduction

Concurrent data structures offer developers a familiar inter-
face for efficiently managing data in multithreaded programs,
but are difficult to implement correctly. An implementation
must behave correctly for any number of threads, each of
which can perform any sequence of operations with any
arguments. For any such scenario, there are an enormous
number of possible thread interleavings.

Many of these data structures are collections, which typi-
cally provide methods to add and remove items, and some-
times to check whether the structure contains an item. Even
in the sequential case, the space of collections is complex,
incorporating hash sets, lists, stacks, queues, priority queues,
and many other kinds. For each interface, a variety of im-
plementation strategies exist, e.g., cuckoo hashing vs. linear
probing, various kinds of heaps for implementing priority
queues, and so on.

Concurrency adds enormous complexity, as threads must
carefully synchronize to avoid erroneous behavior. Over
the years, developers have explored a number of different
synchronization strategies. Examples include coarse-grained
locking, fine-grained locking, lazy synchronization, lock-free
(or nonblocking) synchronization, and optimistic synchro-
nization [11, 12, 26]. These strategies offer different perfor-
mance tradeoffs as well as different correctness challenges.
Various correctness criteria, such as linearizability [15], have

Stephen F. Siegel
University of Delaware
Newark, DE, USA
siegel@udel.edu

also been introduced. Over decades, a large literature has
grown around the “art” of concurrent collection specification,
design, and analysis.

As the difficulties of developing correct concurrent col-
lections became clear, researchers began to explore various
computer-aided verification approaches. These approaches
differ in the range of structures they can handle, the input
language they accept, the degree of automation, complete-
ness, and other factors. They draw upon techniques from
model checking, proof systems, static analysis, and type the-
ory, among others. We summarize some of this work in §6.

In this project, we are exploring the use of small scope,
stateful model checking. Our goal is to develop a set of tech-
niques and an easy-to-use tool that are applicable to a wide
range of collection kinds, synchronization primitives, and
strategies. The tool, the CoLLECT verifier [6], is free and open-
source. We have also been engaged in an ongoing extensive
case study of all concurrent data structures in a widely-used
text [14]. The results of this study are also available on the
CoLLECT web site.

The contributions of this paper are:

§2 a precise and easy-to-understand classification of cor-
rectness specifications for concurrent collections, de-
composed by collection kind, synchronization pro-
tocol, and consistency property, and incorporating
“stuck” executions;

§3 a set of small scope model-checking techniques for
efficiently verifying that a concurrent collection meets
its specification;

§4 an automated command-line tool, COLLECT, that im-
plements those techniques and gives the user precise
control over dimensions of the small scope and other
options; and

§5 a case study applying that tool to all 20 set, queue, and
priority queue implementations in [14], and which
reveals several previously undiscovered defects.

2 Specification

We adopt the following terminology. An interface I consists
of a list of methods, each with a name, list of input types, and
output type (or void). An event for I comprises: (1) a method
name in I, (2) an integer thread ID, (3) a bit indicating either
invocation or response, and (4) either the list of argument

values (for an invocation) or the return value (if any, for a
response).

For any n > 1, an n-threaded trace (or history) for I is
a finite sequence « of events for I in which all thread IDs
are in the range 0..n — 1, and the following holds. For any
i € 0..n — 1, let «|; be the projection of « onto the events in
thread i. Then «a|; has the form e;e, - - - e,, where for each odd
i € 1..r there is some method f such that e; is an invocation
of fand,ifi +1 < r, ;41 is a response from f. We say e;,; is
the matching response to e;. Note a|; may be empty, or may
end with an invocation with no matching response.

A concurrent object ¢ for I provides an implementation
of all methods in I. We consider executions consisting of a
fixed set of n threads, each of which calls methods on c¢. Each
invocation or response occurs at a discrete moment in time.
Recording this sequence of events results in an n-threaded
trace for I. Correctness of ¢ is specified by a predicate on
such traces; given any trace, such a predicate determines
whether the trace is correct or incorrect.

Let @ be an n-threaded trace and i € 0..n — 1. If «|; is
nonempty and ends with an invocation, we say thread i
becomes stuck in a. We say that « is a stuck trace if there is
some thread which becomes stuck in «. If « is not stuck, it
is a complete trace. We will see that in some cases, getting
stuck is considered correct behavior.

We next turn to the question of how to specify correctness
predicates on traces. Such a specification will consist of two
parts: (1) an oracle, which specifies correct sequential traces,
and (2) a consistency property which specifies how a concur-
rent trace should relate to sequential ones. We describe these
in turn.

2.1 Oracles

An oracle o for interface I is a predicate on sequential (single-
threaded) traces on I. In practice, o might be implemented
as a simple sequential program with an interface similar
to I, except that nondeterministic methods take an extra
argument specifying the desired return value. All calls should
return, i.e., the oracle itself should never become stuck. An
additional method

bool isAccepting(bool stuck);

tells whether o is in an accepting state for a complete trace
(by passing false for stuck) or for a stuck trace (by pass-
ing true for stuck). To check whether a sequential trace a
is correct, one calls the operations of @ on o, checks that
the return values match those specified in «, and then calls
isAccepting to see whether o accepted the trace.

In this paper, we consider three standard collection interfaces—

set, queue, and priority queue—and describe oracles for each.
Each of these collections has a well-known interface and
expected behavior. For example, a set with element type T
supports the three methods

bool add(T item); bool remove(T item);

J. H. Davis and S. F. Siegel

bool contains(T item);.

The state of the set consists of a (mathematical) set S and
these methods have their standard meanings; add and re-
move also return true iff the call resulted in a change to
S.

A queue supports two methods:

void enqueue(T item); T dequeue();.

Its state is a finite sequence of T and the methods have the
usual FIFO semantics.
A priority queue supports two methods

void enqueue(T item, int score);
T removeMin(); .

Its state is a finite multiset of pairs (x, s) where x € T and
s is a nonnegative integer score (or priority). Method en-
queue adds a pair to this multiset, while removeMin re-
moves an entry (x,s) with minimal s and returns x. Note
that removeMin is in general nondeterministic as there can
be multiple entries with the same score.

These descriptions almost suffice to specify three oracles,
but further information is required to complete them. For
example, in a concurrent queue, what should happen when
a thread invokes dequeue when the queue is empty? In
some implementations, this call will return a special value
(e.g., null); in others, the call is expected to block until some
other thread enqueues data. The latter is an example of a
synchronization protocol, and these protocols are reflected
in variants of the queue oracle.

We consider three common synchronization protocols
and describe the resulting oracle in detail in the case of a
queue in Fig. 1. Each automaton accepts precisely the correct
sequential traces, ignoring the arguments and return values.

An implementation in which every method invocation is
expected to return, regardless of actions of other threads, is
nonblocking. Note in Fig. 1(a) that the nonblocking queue
oracle does not accept any stuck trace; each invocation must
be immediately followed by the matching response.

A bounded queue has a specified capacity; a thread blocks
if it tries to dequeue when the queue is empty or enqueue
when the queue is full. Fig. 1(b) shows the behavior of bounded
queue oracle with capacity 2. This is an example where end-
ing in a stuck state is the correct behavior of the oracle.

A synchronous queue has an even tighter synchronization
restriction: each enqueue call must synchronize with a de-
queue call (and vice-versa). In other words, these method
calls must overlap. The oracle for a synchronous queue (Fig.
1(c)) accepts complete traces that begin with enqueue and in
which enqueue and dequeue alternate. Stuck executions are
accepted if, after executing an equal number of enqueue and
dequeue calls, one of these methods is invoked but does not
respond. We will explain below how every correct stuck con-
current execution of a synchronous queue relates to correct
executions of this oracle.

Model Checking Concurrent Collections
Extended Report

Figure 1. Synchronization specifications for queue oracles. ie=invoke enqueue, re=response enqueue, id=invoke dequeue,
rd=response dequeue. (a) nonblocking. (b) bounded with capacity 2. (c) synchronous.

In theory these various synchronization protocols could
apply to sets or priority queues, but in our case study we
encountered only nonblocking sets and priority queues. In
summary, we have encountered 5 distinct oracles: nonblock-
ing set, nonblocking queue, nonblocking priority queue,
bounded queue, and synchronous queue.

2.2 Consistency Properties

The consistency property specifies how any concurrent trace
must relate to one or more oracle traces. In this paper, we con-
sider three such properties: sequential consistency [18], lin-
earizability [15], and quiescent consistency [7, 12]. Intuitively,
each property is based on some partial order on events, which
must be preserved when permuting the events of the con-
current trace. If one of these permutations is accepted by
the oracle, the concurrent trace is correct. We now describe
these properties precisely.

Let I be an interface, n > 1, and « an n-threaded trace for
I. An operation in « is a pair e;e; where e; is an invocation
and e; is the matching response, or the single event e if e;
has no matching response in «. For operations x and y, write
x < y if x has a response event and that event occurs before
the invocation of y in a.

Let x1, . . ., x, be the operations of «, with the invocations
occurring in the same order as they do in a. Let 7 be a
permutation of 1..r. Define 7% («) to be the event sequence
formed from the concatenation

Xp-1()Xg-1(2) " Xg=1(r)-

Note the i-th operation of @ becomes the 7 (i)-th operation of
7" (a). Let 7 () be the same as 7*(«) except that all thread
IDs are changed to 0. We are interested in the case where
7(a) is a sequential trace accepted by an oracle. Note, how-
ever, it may not be a trace if « is stuck, and it can not be a
trace if two or more threads become stuck, since a sequential
trace can have at most one stuck call.

We say 7 preserves program order in « if whenever 1 <
i < j <randx; and x; are operations from the same thread,
x(i) < 7(j).

We say 7 preserves linearization in « if, whenever 1 < i <
j <randx; < xj, (i) < m(j). Note this implies 7 preserves
program order.

Let k € 0..r. We say « is quiescent at k if for all i € 1.k
and j € k + 1..r, x; < x;. Equivalently, in the state just after
the first 2k events of @, no thread has a pending method

call. (Note any trace is quiescent at 0.) We say & preserves
quiescence in « if for any such k, whenever 0 < j < k,
we have 7(j) < n(k). As x is bijective, this implies that
whenever k < j < r, 7(k) < 7n(j). In short, & will not
move an event across a quiescent boundary. Observe that if
7 preserves linearization then 7 preserves quiescence.

The appropriate notion of correctness for stuck traces is
subtle. We have already observed that if ¢ has two or more
stuck threads, it cannot be permuted to a sequential trace.
This issue is analyzed in [4] (in the case of linearizability),
which concludes that the proper generalization to stuck ex-
ecutions requires focusing on one stuck thread at a time,
ignoring the final stuck call of all other stuck threads. The
intuition is that “all of the pending operations in the stuck
history need to have a justification for being stuck.” We adopt
this approach to specifying correct stuck executions.

Specifically, for each i € 1..n for which thread i is stuck
in a, let a[i] be the trace obtained by removing from « the
last event of thread j, for all j # i such that thread j is stuck
in . Hence «[i] is a trace in which thread i is the one and
only thread that becomes stuck.

Now we can define the three consistency properties: se-
quentially consistent (SC), linearizable (L), and quiescent con-
sistent (QC):

Definition 2.1. Let ¢ be a concurrent object with oracle o
and « an n-threaded trace of c. We say « is SC (resp. L, QC)
if the following hold:

1. if & is complete then there is some permutation 7 that
preserves program order (resp. linearization, quies-
cence) in « such that 77 (@) is accepted by o, and

2. if o is stuck then for each i € 0..n —1 for which thread
i is stuck in a, there is some permutation x that pre-
serves program order (resp. linearization, quiescence)
in a[i] such that 7(e[i]) is accepted by o.

We say c is SC (resp. L, QC) if every trace of c is SC (resp. L,
QQC).

From the observations above, we have L = SC and L =
QC. In general, SC and QC are not comparable [14, §3.5.1].

Example 2.2. Consider the complete 4-threaded trace « of
a synchronous queue:

O:ie 1:de 2:d Owre 3:id lire 2:ird 3:rd.

The number before the ‘" is the thread ID and the event abbre-
viations are as in Fig. 1. There is a permutation 7 preserving
linearization such that 7*(«) is

O:ie O:re 2:id 2:rd liie lire 3:id 3:rd.

Note the response in thread 0 occurs before the invocation
of thread 3 in «, so this ordering must be preserved by 7.
Assuming the value dequeued by thread 2 is the value en-
queued by thread 0, and the value dequeued by 3 is that
enqueued by 1, 7(a) is accepted by the synchronous queue
oracle, so « is linearizable.

3 Verification Approach

In this section, we describe the techniques we have used to
verify or refute the proposition that a concurrent collection
satisfies one of the consistency properties described above.
For simplicity, we assume the element type T is the set of
nonnegative integers.

The basic technique is stateful model checking [5] within
a bounded scope. Specifically, the user specifies concrete
bounds on all parameters of the verification task, such as
the number of threads, the number of method calls made by
each thread, and the values of the arguments. These bounds
determine a finite transition system, the reachable states of
which are explicitly enumerated in a depth-first search order.
The states are saved (in a hash set) and the search backtracks
when it encounters a state seen before.

If a violation is found, the search stack encodes a coun-
terexample in the form of an execution prefix ending in a
violating state. This can be presented to the user to help iso-
late the defect. If no violation is found, the parameters can be
gradually increased and the process repeated. While this pro-
cess does not produce an iron-clad guarantee of correctness,
decades of experience support the small scope hypothesis,
which posits that almost all defects manifest within small
bounds [16].

We use the CIVL Model Checker [25]. The main input
language for this tool is CIVL-C, which is essentially an ex-
tension of standard C with additional primitives and libraries
supporting concurrency, assertions, assumptions, resizable
arrays, and other constructs useful for verification. CIVL also
employs partial order reduction [23] to avoid exploring dif-
ferent interleavings that are guaranteed to result in the same
final state, soundly reducing the number of states that need
to be explored. The state is also transformed into a canonical
form, using techniques such as heap and process canonical-
ization [24], to further reduce state explosion. The model
checker also has an option to perform a preemption-bounded
search [20], an unsound reduction which nevertheless has
proved effective at finding defects in systems with large state
spaces.

A few additional CIVL features were used in this project.
One option enables analysis of programs that use automated
garbage collection. Such programs are not required to free

J. H. Davis and S. F. Siegel

objects allocated by malloc. (When this option is off, mem-
ory leaks are reported if an allocated object becomes un-
reachable.) Another feature is the ability to find a violation
with minimal trace length (option -min). After a violation is
found, it can be further explored with civl replay. This was
useful in determining the root cause of defects discovered in
our case study.

We now look at some of the specific techniques used to
apply model checking to concurrent collection verification.

Schedules. The verification problem is decomposed into
independent tasks, each corresponding to a different sched-
ule. An n-threaded schedule (n > 1) specifies a nonempty se-
quence of steps for each thread. Each step specifies a method
call, including the arguments. For example, the following is
a 3-threaded schedule for a set:

thread 0: add(@), remove(1)
thread 1: add(1)
thread 2: contains(1).

Given a schedule, a complete program is constructed link-
ing the concurrent collection implementation, oracle, sched-
ule, and a driver. The driver creates n worker threads, each of
which executes the operations specified by the schedule and
terminates. The driver records the results of each method
call in fields in the step. If all workers become stuck, due to
deadlock or a non-progress cycle, there is a mechanism to
force all threads to terminate while setting a special “stuck”
flag. The driver then checks the correctness of the (stuck
or complete) execution by enumerating permutations and
checking against the oracle, according to the protocol de-
scribed in §2. An assertion violation is issued if the property
is violated. The model checker is applied to this program to
explore all possible executions (arising from interleavings or
other sources of nondeterminism). If the model checker re-
ports that the assertions are never violated, every execution
of that schedule is correct.

Checking SC. Each schedule step contains an integer
result field for a thread to store the value returned by the
step’s method call. These fields are initialized with a special
negative value that is overwritten when the call returns. If
there is an entry which is not overwritten, the thread became
stuck. A 0 is written to this field if a method returning void
returns.

Once all workers terminate, the completed steps of the
schedule are arranged in a sequence a preserving thread
order in a canonical way: all steps of worker 0, followed
by all steps of worker 1, etc. If worker i has r; steps, and
r = Y7.' r, then there are

r!
r 0! el n71!
permutations 7 of 1..r that preserve thread order. The driver
enumerates these permutations. For each x, it forms the
sequential schedule 7(a) and executes the oracle to see if

Model Checking Concurrent Collections
Extended Report

it accepts this sequence. As soon as it finds an acceptable
one, the program terminates. If it exhausts all 7 without
satisfying the oracle, an assertion violation is generated and
a diagnostic message is printed describing the schedule.

Checking L. The process is similar to the one above, but
more information must be recorded to determine when one
call returned before another was invoked. In our first ap-
proach to this problem, we introduced a shared integer vari-
able time, which is initially 0 and is incremented after each
invocation or response event. Each step has fields for the
start and end times of the call which are filled in when the
method of that step is invoked or returns.

While this approach is sound, it records more informa-
tion than necessary. Different interleavings may result in
final schedules that differ only in their start/stop times, but
represent traces that are equivalent under the linearizability
relation. This can lead to extreme, and extremely unneces-
sary, state explosion.

In our revision, time is modeled abstractly, as follows:
there are shared variables status, a boolean initially false,
and abstract_time, an integer initially 0. Each worker in
the concurrent execution uses the following atomic methods
to get its start/stop times:
get_start_time {

if (status) {status=false; abstract_time++;}

return abstract_time;

3

get_stop_time {
status=true;
return abstract_time;

}

In the concurrent execution, if call a returns (a “stop”)
before call b begins (a “start”), there must occur a start after
a stop (with no intervening start or stop events) at some
point after a returns but at or before b begins. Therefore the
abstract start time for b will be at least one greater than the
abstract stop time of a. Hence this abstraction suffices to
define the partial order on the set of events that is needed to
check L. (In effect, this time abstraction chooses a canonical
representation of an interval order [17, Sec. 6.6].)

Once the concurrent execution terminates, the driver pro-
ceeds as in the SC case, iterating over all permutations that
preserve thread order. This time, however, it filters out any
permutation which moves an invocation with abstract start
time k before a response with abstract stop time j < k.

Checking QC. To check all executions of a schedule are
QC, a barrier is inserted arbitrarily into the schedule. The
workers execute their pre-barrier steps, then join up, and
perform their post-barrier steps. Hence the barrier becomes
a quiescent point in the concurrent execution. The driver
then searches for a permutation of the pre-barrier steps that
is accepted by the oracle, and then a permutation of the

struct Lock {$proc owner; int count;};

/*@ depends_on \access(l); */
static $atomic_f void
Lock_acquire_aux(Lock 1) {
$when(1->owner == $proc_null)
1->owner = $self;

3

/*@ depends_on \nothing; */
static $atomic_f void
lock_increment(Lock 1) { 1->count++; }

Figure 2. CIVL model of Java’s ReentrantLock, excerpt.

post-barrier steps that is accepted. For the second phase,
the oracle starts in the state it ended in after the first phase.
An assertion violation is issued if no satisfactory pair of
permutations is found.

The barrier is chosen by iterating over threads i. For each
i, an integer b; is chosen nondeterministically from 0..r;; the
barrier for thread i occurs just after its b;-th step. Note there
are [17,' (r; + 1) choices for the barrier.

The model checker explores all possible nondeterministic
choices for the barrier in addition to those for the concur-
rent execution. If it completes without finding an assertion
violation, all executions of the schedule are QC.

Utility classes. Concurrent collection implementations
use various mechanisms for synchronization, including locks
(and variants such as fair locks and reentrant locks), con-
dition variables, and atomic operations (including atomic
getters, setters, and compare-and-swap), and spin loops. In
particular, most of the algorithms in [14] are written in
Java, and make extensive use of Java concurrency inter-
faces and classes, including Lock, Condition, AtomicIn-
teger, AtomicBoolean, AtomicReference, and Atomic-
MarkableReference. We have implemented these in CIVL-
C, as well as other utility classes such as ArrayList and
Bin.

In implementing the concurrent utilities, we took care
to limit state explosion via sound partial order reduction.
We consider the ReentrantLock to illustrate the techniques
used.

The header file Lock.h declares an opaque Lock type (a
pointer to an incomplete structure) together with functions
to create, destroy, acquire, and release a Lock. An excerpt
of ReentrantLock.cvl, which implements that interface, is
shown in Fig. 2. The owner field uses CIVL’s $proc type to
record the identity of the thread that currently owns the lock;
this field is $proc_null when the lock is free. The function
to acquire the lock uses a guarded command $when which
blocks unless the condition is true.

The acquire operation is decomposed using 3 auxiliary
atomic functions. This is to exploit a CIVL feature which

allows an expert developer to specify facts about the depen-
dency relation that the model checker cannot deduce on its
own. The model checker’s partial order reduction scheme
uses this information to reduce the number of states ex-
plored. For example, the function am_owner must commute
with any transition from another thread: if this thread is
the owner, then no other thread can change that fact until
this thread releases the lock; if this thread is not the owner,
then again no other thread can make it the owner. Informing
the model checker of this fact allows it to explore only a
single transition from a state in which a call to am_owner is
enabled. In contrast, Lock_acquire_aux is not necessarily
independent of actions from a thread that can access the
object pointed to by L

Detection and recovery from stuck executions. The
verification approach we have described requires that a pro-
gram detect when its worker threads become stuck, and
then release the workers so that the main thread may re-
sume execution. For example, a concurrent bounded queue
using locks and condition variables for synchronization will
become stuck if every worker invokes dequeue when the
queue is empty. When this happens, the main thread should
respond by searching for matching stuck sequential traces
and conclude the concurrent execution is correct. However,
while CIVL, like most model checkers, has the ability to
detect and report deadlocks or cycles in the state space, it
does not provide any way for the program under analysis to
detect and respond to this condition.

Our solution is to extend each concurrency mechanism
with an ability to detect when a stuck state is reached, set a
special flag indicating this is the case, and then release the
workers. For example, condition variables provide a method
await which causes a thread to release a lock and sleep until
notified by a signal or signalAll call from another thread.
In our implementation of condition variables, await will
also return when a deadlock occurs because all threads are
either terminated or in an await call. After await returns the
worker may call a method isStuck() to determine whether
await returned due to deadlock. This feature is implemented
by keeping track of the status of each thread: whether it has
terminated, whether it is blocked in an await call, and if
so, the condition variable on which it is waiting. All of this
is implemented in CIVL-C code; no changes to the model
checker were required.

We developed a similar mechanism, the NPDetector (non-
progress detector), to detect when all workers reach a state
in which they will loop forever without ever changing the
shared state. This requires that the changes to the shared
state within the loop are instrumented with a call to a func-
tion signal defined in this interface. The tops and bottoms
of the loop are also instrumented with certain function calls.
Internally, the NPDetector keeps track of when each thread
has made it through a complete iteration without changing

J. H. Davis and S. F. Siegel

the shared state. Again, these routines are each implemented
in a few lines of CIVL-C code. For now, a user of the NPDe-
tector needs to manually insert these calls into each suspect
loop; in the future, we hope to automate this process.

4 CoLLECT: the Concurrent Collection
Verifier

The techniques described in §3 have been implemented in a
new open-source, freely available tool, the CoLLECT verifier
[6]. CoLLECT is written in Java and extends the CIVL model
checker. To use COLLECT, the user writes a concurrent im-
plementation, in CIVL-C, of one of the standard collection
interfaces, currently one of Set.h, Queue.h, or PQueue.h.
As mentioned above, this implementation may use other
provided utility modules. The user then invokes CoLLECT
through its command line interface, specifying the kind of
collection and property to be checked, the range of schedules
to generate, and other details described below.

CoLLECT then generates a set of schedules. For each sched-
ule, it forms a whole program comprising the user’s code, the
schedule, driver, and oracle, and invokes CIVL’s verification
engine. CIVL is invoked through its Java API, so the whole
process takes place within one instance of the Java Virtual
Machine. CoLLECT is multithreaded: the user specifies the
number of Java threads, and the schedules are distributed to
the threads using the manager-worker pattern.

Basic options. The command line option -kind=X, where
X is one of set, queue, or pqueue, specifies the collection
kind. The option -spec=Y, where Y is one of nonblocking,
bounded, or synchronous specifies the synchronization
protocol, which together with the kind determines the or-
acle to be used. The consistency property to be checked
is specified by -prop=2, where Z is one of sc, linear, or
quiescent.

Specifying the schedule scope. There are many ways to
bound the schedule space. We describe the case for sets. The
user specifies

1. an upper and lower bound on the number of threads,

2. an upper bound M on the values that the set can hold
(the minimum value is always 0),

3. an upper and lower bound on the total number of
steps in a schedule.

Each step is specified by one of three kinds (add, remove,
contains) and has an argument in [0, M — 1]. Hence the total
number of schedules in these bounds is finite. Similar bounds
are used for queue and priority queues.

Thread symmetry. CoLLECT provides additional options
to control the set of schedules generated. One is thread sym-
metry (-threadSym). Most of the implementations we con-
sider are thread-symmetric as the algorithms never access a

Model Checking Concurrent Collections
Extended Report

thread ID. Consider schedules with n threads and let X de-
note the group of permutations of the n thread IDs. There is
a natural group action of ¥ on schedules and on concurrent
traces. For o € %, and schedule s, the set of traces resulting
from schedule o(s) must be the result of applying o to each
trace of s. In particular, all executions of s are SC (resp. L or
QC) iff all executions of o(s) are. Hence to verify or refute
one of these properties, it suffices to pick one representative
from each equivalence class of schedules. This technique has
been used before to verify L[30].

Unsound reductions. Other options reduce the num-
ber of schedules generated. Unlike thread symmetry, these
may cause COLLECT to miss a violation. Options include
-addsDominate, which skips schedules that have more re-
moves than adds, and -genericVals. The latter is for queues
and priority queues. A reasonable assumption of these im-
plementations is that they are agnostic to the values of the
items enqueued. Hence all schedules use the values 0, 1,... .,
in that order, for their add operations. For priority queues,
-distinctPriorities keeps only schedules in which the scores
of the items added are distinct.

Pre-adds. Some defects may be found on short paths start-
ing from a state in which the collection is not empty. There-
fore CoLLECT has an option to perform a specified number
of pre-adds, add operations executed sequentially before the
threads are created. The option -npreAdds=a..b specifies
the range of values to use for the number of pre-adds.

Termination. CIVL can detect both deadlocks and the
presence of cycles in the reachable state space—both indicat-
ing a nonterminating execution. However a cycle may not
necessarily represent an actual execution if it violates weak
fairness, i.e., if there is a thread that is constantly enabled but
never executes on the cycle. We added an option -fair that
tells CIVL to ignore unfair cycles. We also implemented a util-
ity class FairReentrantLock, which implements Lock.h, to
model a Java ReentrantLock with fairness set to true.

Hash functions. COLLECT provides two options for mod-
eling hash functions. Nondeterministic hashing constructs
the hash function on-the-fly by assigning and caching a non-
deterministically chosen integer to each input. This option
takes two parameters, a domain bound m and range bound N.
The hash function constructed accepts any nonnegative inte-
ger, reduces it modulo m, and returns an integer in 0..N — 1.
Note there are N™ such functions. The other option is to use
the identity function.

5 Case Study

We have chosen the implementations of [14] for a case study
for several reasons. First, this text provides a wealth of differ-
ent kinds of concurrent collections and uses a large variety
of synchronization primitives and strategies. The Java code

shown in the text is almost complete, and there is also com-
panion code available from the book web site.! The work
is mature: a first edition appeared in 2008 [12], a revised
first edition which incorporated many corrections in 2012
[13], and a second expanded edition in 2020 [14]. The text is
influential, widely read, and used in courses throughout the
world. The second edition acknowledges 75 people who con-
tributed corrections. Any remaining defects have survived a
high level of scrutiny and must be subtle.

Our analysis covers all data structures from the chapters
on Lists, Queues, Hash Sets, and Priority Queues (chapters
9, 10, 13, and 15, respectively), for a total of 20 Java classes.
Lists and hash sets implement the set interface, while queues
and priority queues implement queue and priority queue,
respectively, as described in §2.1. The names of these classes
appear in Table 2, along with several variations described
below.

For list-based sets, the text makes the simplifying assump-
tion that hash functions are injective, while the hash-based
sets (except LockFreeHashSet) make no such assumption
and are designed to handle hash collisions.

5.1 Methods

We translated the book’s Java classes to CIVL-C manually.
While mostly rote, there were some challenges. The first
issue is that CIVL-C is not an object-oriented language. So for
each class, such as Node, we create a C struct and define the
Node type to be a pointer to that struct. A method call such
as u.foo(al,...) is transformed to Node_foo(u, al,...).
Fortunately, the runtime class of all method calls in the Java
code is statically determinable. The Java classes also use
generic types (e.g., Queue<T>), a feature not supported
by CIVL-C. As explained in §3, we chose to fix T = int for
this study. The Java code uses try S1. .. finally S2 blocks to
ensure S2 is executed before each return statement in S1;
we manually inserted S2 before each such return statement.
Finally, for implementations which accept stuck executions,
some insertions were required as described in §3. With these
techniques, the CIVL-C code looks very close to the original
Java code; Fig. 3 is a typical example.

5.2 Experimental Setup

We ran a large number of experiments applying COLLECT
to these CIVL-C codes. Each experiment involved a particu-
lar command line configuration, i.e., choices for the options
described in §4. Five of these configurations are detailed
in Table 1. The table shows each configuration’s range of
pre-add count, thread count, and step count explored.
Configuration C uses the non-deterministic model of the
Java hashCode function, with domain bound 3 and range

1At this time, the code in the text [14] appears to be more up-to-date than
the companion code. Unless stated otherwise, we use the text, and use the
companion code only when necessary to fill in gaps.

protected boolean relocate(int i, int hi) {

int hj = 0;

int j =1 - 1i;

for (int round=0; round<LIMIT; round++) {
List<T> iSet = table[i][hi];
Ty = iSet.get(0);
switch (i) {
case 0: hj=hash1(y)%capacity; break;
case 1: hj=hash@(y)%capacity; break;
3

acquire(y);
/] ...
1}

!

static bool relocate(Set s, int i, int hi) {

int hj = 9o;

int j =1-1

for (int round=@; round<LIMIT; round++) {
ArraylList iSet = s->table[i][hil;
Ty = ArraylList_get(iSet, 0);
switch (i) {
case 0: hj=hashi1(s,y)%s->capacity; break;
case 1: hj=hash@(s,y)%s->capacity; break;
3
acquire(s, y);
/...

b3

Figure 3. Excerpt of method relocate from [14, Fig. 13.27]
PhasedCuckooHashSet (parent class of StripedCuck-
ooHashSet) and CIVL translation below.

bound 2. For &, we use a preemption bound of 2 in order
to make the execution time of these experiments tractable.
No preemption bound is imposed on other configurations.
The number of schedules for various types of collections
varies due to the differences in their interfaces and the use of
different options for different collection kinds. Specifically,
we apply -threadSym to all cases. For queues and priority
queues we enable -genericVals. For priority queues only we
enable -addsDominate and -distinctPriorities.

The “SQueue” case in Table 1 applies to the synchronous
queues we examine. Because the add methods in those col-
lections block until a remove call is made, pre-adds do not
apply. We set the number of pre-adds to zero and increment
the number of steps by one for each configuration for these
synchronous queues.

5.3 Results

Table 2 lists the results in seconds for all experiments run.
§5.4 describes the violations in detail. Runs automatically
stop early if a violation is found. A “-” indicates “does not
apply” or was not attempted. These results were collected
on a 16-core Intel Xeon W-2145 system with 256GB RAM.
Because C differs from 8 only in the use of nondetermin-
istic hashing, we do not apply C to data structures that do
not use hashCode. All Lists assume an injective hashCode,
which the nondeterministic model does not provide. The
implementation of LockFreeHashSet also assumes an in-
jective hashCode, although the text does not state this. The
reachable state spaces of StripedCuckooHashSet and Re-
finableCuckooHashSet are unexpectedly infinite in C due

J. H. Davis and S. F. Siegel

to a previously undiscovered defect that will be discussed in
§5.4 item 6. Finally, we do not run & on Sets or Lists due to
the extremely large number of schedules to check.

5.4 Violations Found

We find eleven violations: three expected and eight new. As
described in §3, we use civl verify -min to find a violation
of minimal length and civl replay with printfs to review
violations in detail. We indicate after each heading whether
the violation was expected and the smallest configuration
able to find the violation, as well as a brief description. We
omit the SimpleTree violation from this list as it will be
explained in detail below.

1. Original LockFreeList sequential inconsistency
(expected, B). We find remove contains a known SC
violation [27]. We find no violations in the corrected
version from [13].

2. SynchronousDualQueue sequential inconsistency
(unexpected, B). Method dequeue can incorrectly
return without blocking when the queue is empty. We
provide a simple patch which corrects this.

3. RefinableHashSet null pointer dereference (un-
expected, B). Method resize can set a reference to
uninitialized memory shortly before add dereferences
it. RefinableCuckooHashSet suffers the same de-
fect.

4. LockFreeHashSet sequential inconsistency (un-
expected, B). This violation occurs in the remove
function and allows two threads to indicate they have
removed the same item, similar to violation 1 above.

5. StripedCuckooHashSet null pointer dereference
(unexpected, B). A thread in resize can set refer-
ences to uninitialized memory immediately before
another thread in relocate tries to read them.

6. StripedCuckooHashSet infinite state (unexpected,
C). With certain hashCode functions, this class can
infinitely recurse on resize. RefinableCuckooHash-
Set suffers the same defect.

7. FineGrainedHeap non-termination (unexpected,
A). Two threads both in add can enter a cycle in state
space. Using FairReentrantLock and weak fairness
in thread scheduling eliminates the violation.

8. FineGrainedHeap deadlock (unexpected, B). A
deadlock can occur, on a priority queue with one item,
between an adding thread and a removing thread,
which both try to acquire a lock held by the other.

9. Original SkipQueue non-termination (expected,
A). In [12, Fig. 15.5], the ind AndMarkMin method
does not advance its current node reference in linked
list traversal when it encounters a marked node.

10. SkipQueue sequential inconsistency (expected,
&). We verify SkipQueue is QC as expected [14, Sec.

Model Checking Concurrent Collections
Extended Report

hashCode Preempt. List/Set Queue SQueue PQueue
Config. Pre-adds Threads ~Steps Model Bound Scheds. Scheds. Scheds. Scheds.
A 0 1.2 1.2 identity 00 63 9 9 7
B 0..1 1.2 1.2 identity () 270 18 25 25
C 0..1 1.2 1.2 non-det. (o) 270 18 25 25
D 0.1 1.3 1.3 identity 00 8108 58 83 156
& 0..1 1.3 1.4 identity 2 322930 166 223 1096

Table 1. The experimental configurations passed to CoLLECT, including the number of pre-adds, threads, and steps. We also
denote the technique used to model the hashCode function, the preemption bound, and the total number of schedules generated

given these bounds for the different collection kinds.

Collection Name Kind SP CP A 8 C D 1]
1 CoarselList L N L 17 47 - 1613 -
2 FineList L N L 17 47 - 1766 -
3 OptimisticList L N L 18 49 - 2136 -
4 LazyList L N L 17 49 - 1988 -
5 LockFreeList L N L 18 51 - 1856 -

LockFreeListOriginal® L N L 18 48 - 486 -
6 BoundedQueue Q B L 8 10 - 115 123
7 UnboundedQueue Q N L 6 9 - 32 157
8 LockFreeQueue Q N L 6 9 - 61 171
9 SynchronousQueue Q S L 6 11 - 44 246
10 SynchronousDualQueue Q S L 8 14 - 116 182

SynchronousDualQueuePatched® Q S L 8 14 - 1450 187
11 CoarseHashSet H N L 19 50 55 1572 -
12 StripedHashSet H N L 19 52 59 1732 -
13 RefinableHashSet H N L 21 50 54 572 -
14 LockFreeHashSet H N L 21 52 8 547 -

LockFreeHashSetPatched? S N L 19 56 8 1054 -
15 StripedCuckooHashSet S N L 20 53 oo 896 -
16 RefinableCuckooHashSet S N L 22 59 oo 1093 -
17 SimpleLinear P N QC 6 10 - 39 447
18 SimpleTree P N QC 6 12 - 44 204
19 FineGrainedHeap P N L 6 11 - 22 27

FineGrainedHeapFair! P N L 7 11 - 24 27
20 SkipQueueOriginal® P N SC 9 26 - 228 254

SkipQueueQC* P N QC 10 26 - 263 8582

SkipQueueSC® P N SC 9 23 - 178 2730

Table 2. Results of the experiments. The kind (List, Queue, Set, Priority Queue), synchronization protocol (non-blocking,
bounded, synchronous), and consistency property (L, QC) are listed for each collection. Each cell in the columns marked
with a configuration name indicates the time in seconds to verify the data structure for the given bound or find a violation.
Experiments finding a violation are indicated by red typeface. !: Enables the use of fair locks. ?: Includes our fix of the double
remove bug. 3: The earlier version of the data structure from the first edition. *: Configured to check QC. 5: Configured to

check SC. ®: Includes our fix of the non-blocking remove bug.

15.5], and detect a simpler SC violation than that pro-
vided by the book, with 3 threads executing 4 steps.

Extended synopsis for SimpleTree violation. In Sim-
pleTree we identify an unexpected QC violation with D.
The SimpleTree is a complete binary tree storing items with
score i in the ith leaf node from the left, which are each Bins
of items with the same score. Each non-leaf node holds a
count of the number of elements contained in the Bins of its

left branch. It is possible for a removeMin call to return null
despite the priority queue containing one item, in a manner
that violates QC. Consider an empty tree of height 2. An
add(0,1) results in the state shown in Fig. 4(a). Now suppose
a thread #; executes two removeMin calls while a thread t,
calls add(1,0).

Thread t; places 1 in the leftmost Bin and begins moving
up the tree. It increments the counter of the parent node, re-
sulting in Fig. 4(b). But before t; updates the root node, t; calls
its first removeMin, which removes item 1 and completes,
resulting in Fig. 4(c). Then ¢, call its second removeMin, and
as the root counter is 0, it proceeds down the right edges
and concludes the tree is empty, returning null. Finally, t,
increments the root node and returns.

This violates QC, as there is a quiescent period after the
initial add(0,1), and no sequential arrangement of the sec-
ond add and the two removeMins can match the above
outcome. There is no correct way a removeMin call can re-
turn null unless the structure is empty, which would require
the prior removeMin call to return item 0 of score 1, which
was added before the quiescent period.

6 Related Work

This is not the first study attempting to verify linearizabil-
ity of algorithms from [12]. Earlier work includes [27], which

uses an automata-based approach and the SPIN model checker.

That approach targets list-based sets only, and is applied to
2-thread schedules in which each thread calls one method.
It found some known violations of linearizability. Our study
goes further in that it applies to a variety of collection kinds
and to larger schedules; in addition to finding some known
violations, we have found several previously unknown ones.

Several earlier projects have investigated the use of model
checking techniques to verify linearizability, notably [4].
That paper introduced the generalization of linearizability to
stuck executions, an idea we adopted in this project. It also de-
veloped a tool, based on the CHESS dynamic model checker,
which generates and executes schedules, and applied this
to find defects in .NET classes. Due to state explosion, in
those experiments, 100 random schedules were generated
for 3 threads, each with 3 steps. The approach is also limited
to deterministic collections. We have tried to improve upon
this work by ameliorating state explosion through a num-
ber of optimizations (including the use of stateful, rather
than stateless, model checking), by finding creative ways to
bound the schedule (and other parameter) space, by allowing
nondeterministic oracles, and checking other consistency
properties beyond linearizability. [22] uses a stateless model
checking approach focused on C++ programs that use re-
laxed memory operations, a feature we do not support; a few
of the examples are concurrent queues. Other work involving
model checking includes [28, 30].

There are other automated approaches to verifying L. For
example, [1, 2] introduced a thread modular abstraction and
symbolic representation of the state which enables, in theory,
verification for unbounded numbers of threads and inputs.
This has been applied successfully to structures based on
singly-linked lists. In [19], the thread modular approach

10

J. H. Davis and S. F. Siegel

is extended to verify implementations that manage mem-
ory manually (malloc/free) rather than relying on a garbage
collector. This work also applies to singly-linked lists, and
requires the user to specify linearization points.

Further afield, there are deductive approaches that require
interaction with proof assistants or annotations to generate
a proof. While requiring significantly more user effort and
expertise, these provide the strongest guarantees, without
bounds, and are applicable to a wide range of implementa-
tions. See [8-10, 21].

Many other consistency properties have been proposed, in
addition to the three implemented in CoLLECT. These include
eventual consistency [29] and quasi-linearizability [3].

7 Conclusions

We have introduced a comprehensive schema for correctness
specification of concurrent collections, as well as efficient
model checking techniques to verify them. We implemented
these techniques in a tool, CoLLECT, using the CIVL model
checker. We demonstrate the applicability of CoLLECT in
a case study analyzing 20 concurrent data structures from
The Art of Multiprocessor Programming within various small
scopes. In the process, we found eight new defects which had
gone undiscovered for many years. For the implementations
where no defects were found, we have at least identified sig-
nificant regions of the parameter space that are defect-free
and at best provided strong evidence for their correctness.
This work represents, to our knowledge, the most compre-
hensive study to date applying computer-aided verification
to concurrent collections. The project is on-going, and the
results will continue to appear on a publicly-viewable dash-
board to encourage community contribution [6].

CoLLECT and our study remain limited in some respects.
First, we assume a sequentially consistent memory model.
If an algorithm has a data race but all sequentially consis-
tent executions are correct, our approach may fail to detect a
defect. Second, our case study examined only Java implemen-
tations, which rely on garbage collection. Implementations
in languages that require manual memory management face
even deeper correctness challenges. We plan to add data
race detection to COLLECT, and to explore verification of C++
implementations in future work.

References

[1] Parosh Aziz Abdulla, Frédéric Haziza, Lukas Holik, Bengt Jonsson,
and Ahmed Rezine. 2013. An Integrated Specification and Verification
Technique for Highly Concurrent Data Structures. In Proceedings of the
19th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (Rome, Italy) (TACAS’13). Springer-Verlag,
Berlin, Heidelberg, 324-338. doi:10.1007/978-3-642-36742-7_23
Parosh Aziz Abdulla, Bengt Jonsson, and Cong Quy Trinh. 2016. Auto-
mated Verification of Linearization Policies. In Static Analysis, Xavier
Rival (Ed.). Springer, Berlin, Heidelberg, 61-83. doi:10.1007/978-3-662-
53413-7_4

(2]

https://doi.org/10.1007/978-3-642-36742-7_23
https://doi.org/10.1007/978-3-662-53413-7_4
https://doi.org/10.1007/978-3-662-53413-7_4

Model Checking Concurrent Collections
Extended Report

tll tli
to: ty: add(l, O)
(@) (b)

t;: removeMin()
t,: add(1, 0)

(©)

Figure 4. Depiction of events leading to a QC violation in SimpleTree. Coloring indicates the node last updated by each
in-flight method at the time of the snapshot.

(3]

(10]

(11]

(13]

(14]

Yehuda Afek, Guy Korland, and Eitan Yanovsky. 2010. Quasi-
Linearizability: Relaxed Consistency for Improved Concurrency. In
Principles of Distributed Systems, Chenyang Lu, Toshimitsu Masuzawa,
and Mohamed Mosbah (Eds.). Springer Berlin Heidelberg, Berlin, Hei-
delberg, 395-410. doi:10.1007/978-3-642-17653-1_29

Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan.
2010. Line-up: a complete and automatic linearizability checker. In
Proceedings of the 31st ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (Toronto, Ontario, Canada) (PLDI
’10). Association for Computing Machinery, New York, NY, USA,
330-340. doi:10.1145/1806596.1806634

Edmund M. Clarke, Jr., Orna Grumberg, Daniel Kroening, Doron Peled,
and Helmut Veith. 2018. Model Checking (2 ed.). MIT press, Cambridge,
MA, USA. https://mitpress.mit.edu/books/model-checking-second-
edition

Collect Verifier [n.d.]. CoLLECT: the Concurrent Collection Verifier.
https://collect-verifier.org Accessed 28-Jan-2025.

John Derrick, Brijesh Dongol, Gerhard Schellhorn, Bogdan Tofan, Oleg
Travkin, and Heike Wehrheim. 2014. Quiescent Consistency: Defining
and Verifying Relaxed Linearizability. In FM 2014: Formal Methods, Cliff
Jones, Pekka Pihlajasaari, and Jun Sun (Eds.). Springer International
Publishing, Cham, 200-214. doi:10.1007/978-3-319-06410-9_15
Brijesh Dongol and John Derrick. 2015. Verifying Linearisability: A
Comparative Survey. ACM Comput. Surv. 48, 2, Article 19 (Sept. 2015),
43 pages. doi:10.1145/2796550

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021. ReLoC
Reloaded: A Mechanized Relational Logic for Fine-Grained Concur-
rency and Logical Atomicity. Logical Methods in Computer Science 17
(2021), 9:1-9:59. Issue 3. doi:10.46298/LMCS- 17(3:9)2021

Colin S Gordon, Michael D Ernst, Dan Grossman, and Matthew J
Parkinson. 2017. Verifying invariants of lock-free data structures
with rely-guarantee and refinement types. ACM Transactions on
Programming Languages and Systems (TOPLAS) 39, 3 (2017), 1-54.
doi:10.1145/3064850

Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir,
William N. Scherer, and Nir Shavit. 2005. A lazy concurrent list-based
set algorithm. In Proceedings of the 9th International Conference on Prin-
ciples of Distributed Systems (Pisa, Italy) (OPODIS’05). Springer-Verlag,
Berlin, Heidelberg, 3-16. doi:10.1007/11795490_3

Maurice Herlihy and Nir Shavit. 2008. The Art of Mul-
tiprocessor Programming. Morgan Kaufmann, San Francisco,
CA. https://www.elsevier.com/books/the-art-of-multiprocessor-
programming/herlihy/978-0-12-370591-4

Maurice Herlihy and Nir Shavit. 2012. The Art of Multiprocessor
Programming (revised reprint ed.). Morgan Kaufmann, San Fran-
cisco, CA. https://shop.elsevier.com/books/the-art-of-multiprocessor-
programming-revised-reprint/herlihy/978-0-12-397337-5

Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear.
2020. The Art of Multiprocessor Programming (second ed.). Morgan

11

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Kaufmann, Cambridge, MA. https://www.elsevier.com/books/the-art-
of-multiprocessor-programming/herlihy/978-0-12-415950-1
Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: a
correctness condition for concurrent objects. ACM Trans. Program.
Lang. Syst. 12, 3 (July 1990), 463-492. doi:10.1145/78969.78972

Daniel Jackson. 2019. Alloy: a language and tool for exploring software
designs. Commun. ACM 62, 9 (Sept. 2019), 66-76. doi:10.1145/3338843
Mitchel T. Keller and William T. Trotter. 2023. Applied Combina-
torics. https://math.libretexts.org/Bookshelves/Combinatorics_
and_Discrete_Mathematics/Applied_Combinatorics_(Keller_and_
Trotter)

L. Lamport. 1979. How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs. IEEE Trans. Comput. 28, 9
(Sept. 1979), 690-691. doi:10.1109/TC.1979.1675439

Roland Meyer and Sebastian Wolff. 2019. Decoupling lock-free data
structures from memory reclamation for static analysis. Proceedings
of the ACM on Programming Languages 3, Issue POPL, article No. 58
(2019), 1-31. doi:10.1145/3290371

Madanlal Musuvathi and Shaz Qadeer. 2007. Iterative context bound-
ing for systematic testing of multithreaded programs. In Proceedings
of the 28th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (San Diego, California, USA) (PLDI ’07). As-
sociation for Computing Machinery, New York, NY, USA, 446-455.
doi:10.1145/1250734.1250785

Duc-Than Nguyen, Lennart Beringer, William Mansky, and Shengyi
Wang. 2024. Compositional Verification of Concurrent C Programs
with Search Structure Templates. In Proceedings of the 13th ACM
SIGPLAN International Conference on Certified Programs and Proofs.
Association for Computing Machinery, New York, NY, USA, 60-74.
doi:10.1145/3636501.3636940

Brian Norris and Brian Demsky. 2013. CDSChecker: Checking Con-
current Data Structures Written with C/C++ Atomics. SIGPLAN Not.
438, 10 (Oct. 2013), 131-150. doi:10.1145/2544173.2509514

Doron Peled. 1998. Ten years of partial order reduction. In Com-
puter Aided Verification (CAV 1998) (Lecture Notes in Computer Science,
Vol. 1427), Alan J. Hu and Moshe Y. Vardi (Eds.). Springer, Berlin,
Heidelberg, 17-28. doi:10.1007/BFb0028727

Robby, Matthew B. Dwyer, John Hatcliff, and Radu Iosif. 2003. Space-
Reduction Strategies for Model Checking Dynamic Software. Elec-
tronic Notes in Theoretical Computer Science 89, 3 (2003), 499-517.
doi:10.1016/51571-0661(05)80009-X SoftMC 2003, Workshop on Soft-
ware Model Checking (Satellite Workshop of CAV ’03).

Stephen F. Siegel, Manchun Zheng, Ziqing Luo, Timothy K. Zirkel,
Andre V. Marianiello, John G. Edenhofner, Matthew B. Dwyer, and
Michael S. Rogers. 2015. CIVL: The Concurrency Intermediate Verifi-
cation Language. In SC15: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
ACM, New York. doi:10.1145/2807591.2807635 Article no. 61, pages
1-12.

https://doi.org/10.1007/978-3-642-17653-1_29
https://doi.org/10.1145/1806596.1806634
https://mitpress.mit.edu/books/model-checking-second-edition
https://mitpress.mit.edu/books/model-checking-second-edition
https://collect-verifier.org
https://doi.org/10.1007/978-3-319-06410-9_15
https://doi.org/10.1145/2796550
https://doi.org/10.46298/LMCS-17(3:9)2021
https://doi.org/10.1145/3064850
https://doi.org/10.1007/11795490_3
https://www.elsevier.com/books/the-art-of-multiprocessor-programming/herlihy/978-0-12-370591-4
https://www.elsevier.com/books/the-art-of-multiprocessor-programming/herlihy/978-0-12-370591-4
https://shop.elsevier.com/books/the-art-of-multiprocessor-programming-revised-reprint/herlihy/978-0-12-397337-5
https://shop.elsevier.com/books/the-art-of-multiprocessor-programming-revised-reprint/herlihy/978-0-12-397337-5
https://www.elsevier.com/books/the-art-of-multiprocessor-programming/herlihy/978-0-12-415950-1
https://www.elsevier.com/books/the-art-of-multiprocessor-programming/herlihy/978-0-12-415950-1
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3338843
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Applied_Combinatorics_(Keller_and_Trotter)
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Applied_Combinatorics_(Keller_and_Trotter)
https://math.libretexts.org/Bookshelves/Combinatorics_and_Discrete_Mathematics/Applied_Combinatorics_(Keller_and_Trotter)
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1145/3290371
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/3636501.3636940
https://doi.org/10.1145/2544173.2509514
https://doi.org/10.1007/BFb0028727
https://doi.org/10.1016/S1571-0661(05)80009-X
https://doi.org/10.1145/2807591.2807635

[26]

[27]

John D. Valois. 1995. Lock-free linked lists using compare-and-swap.
In Proceedings of the Fourteenth Annual ACM Symposium on Princi-
ples of Distributed Computing (Ottowa, Ontario, Canada) (PODC *95).
Association for Computing Machinery, New York, NY, USA, 214-222.
doi:10.1145/224964.224988

Pavol Cern}'/, Arjun Radhakrishna, Damien Zufferey, Swarat Chaud-
huri, and Rajeev Alur. 2010. Model Checking of Linearizability of Con-
current List Implementations. In Proceedings of the 22nd International
Conference on Computer Aided Verification (Edinburgh, UK) (CAV’10).
Springer-Verlag, Berlin, Heidelberg, 465-479. doi:10.1007/978-3-642-
14295-6_41

12

[28]

[29]

[30]

J. H. Davis and S. F. Siegel

Martin Vechev, Eran Yahav, and Greta Yorsh. 2009. Experience with
Model Checking Linearizability. In Model Checking Software, Corina S.
Pasareanu (Ed.). Springer, Berlin, Heidelberg, 261-278. doi:10.1007/
978-3-642-02652-2_21

Werner Vogels. 2009. Eventually Consistent. Commun. ACM 52, 1
(Jan. 2009), 40-44. doi:10.1145/1435417.1435432

Shao Jie Zhang. 2011. Scalable automatic linearizability checking. In
Proceedings of the 33rd International Conference on Software Engineering
(Waikiki, Honolulu, HI, USA) (ICSE ’11). Association for Computing
Machinery, New York, NY, USA, 1185-1187. doi:10.1145/1985793.
1986037

https://doi.org/10.1145/224964.224988
https://doi.org/10.1007/978-3-642-14295-6_41
https://doi.org/10.1007/978-3-642-14295-6_41
https://doi.org/10.1007/978-3-642-02652-2_21
https://doi.org/10.1007/978-3-642-02652-2_21
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1145/1985793.1986037
https://doi.org/10.1145/1985793.1986037

	Abstract
	1 Introduction
	2 Specification
	2.1 Oracles
	2.2 Consistency Properties

	3 Verification Approach
	4 Collect: the Concurrent Collection Verifier
	5 Case Study
	5.1 Methods
	5.2 Experimental Setup
	5.3 Results
	5.4 Violations Found

	6 Related Work
	7 Conclusions
	References

